Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microsc Microanal ; 22(6): 1198-1221, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27881211

RESUMO

Poly[sulfur-random-(1,3-diisopropenylbenzene)] copolymers synthesized via inverse vulcanization represent an emerging class of electrochemically active polymers recently used in cathodes for Li-S batteries, capable of realizing enhanced capacity retention (1,005 mAh/g at 100 cycles) and lifetimes of over 500 cycles. The composite cathodes are organized in complex hierarchical three-dimensional (3D) architectures, which contain several components and are challenging to understand and characterize using any single technique. Here, multimode analytical scanning and transmission electron microscopies and energy-dispersive X-ray/electron energy-loss spectroscopies coupled with multivariate statistical analysis and tomography were applied to explore origins of the cathode-enhanced capacity retention. The surface topography, morphology, bonding, and compositions of the cathodes created by combining sulfur copolymers with varying 1,3-diisopropenylbenzene content and conductive carbons have been investigated at multiple scales in relation to the electrochemical performance and physico-mechanical stability. We demonstrate that replacing the elemental sulfur with organosulfur copolymers improves the compositional homogeneity and compatibility between carbons and sulfur-containing domains down to sub-5 nm length scales resulting in (a) intimate wetting of nanocarbons by the copolymers at interfaces; (b) the creation of 3D percolation networks of conductive pathways involving graphitic-like outer shells of aggregated carbons;

2.
ACS Appl Mater Interfaces ; 8(21): 13437-48, 2016 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-27171646

RESUMO

The practical implementation of Li-S technology has been hindered by short cycle life and poor rate capability owing to deleterious effects resulting from the varied solubilities of different Li polysulfide redox products. Here, we report the preparation and utilization of composites with a sulfur-rich matrix and molybdenum disulfide (MoS2) particulate inclusions as Li-S cathode materials with the capability to mitigate the dissolution of the Li polysulfide redox products via the MoS2 inclusions acting as "polysulfide anchors". In situ composite formation was completed via a facile, one-pot method with commercially available starting materials. The composites were afforded by first dispersing MoS2 directly in liquid elemental sulfur (S8) with sequential polymerization of the sulfur phase via thermal ring opening polymerization or copolymerization via inverse vulcanization. For the practical utility of this system to be highlighted, it was demonstrated that the composite formation methodology was amenable to larger scale processes with composites easily prepared in 100 g batches. Cathodes fabricated with the high sulfur content composites as the active material afforded Li-S cells that exhibited extended cycle lifetimes of up to 1000 cycles with low capacity decay (0.07% per cycle) and demonstrated exceptional rate capability with the delivery of reversible capacity up to 500 mAh/g at 5 C.

3.
ACS Macro Lett ; 5(4): 471-475, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35607235

RESUMO

We report on the conformal coating of thickness-tunable multilayers directly onto the sulfur (S8) cathodes by the layer-by-layer (LbL) deposition for the significant improvement in the performances of Li-S batteries even without key additives (LiNO3) in the electrolyte. Poly(ethylene oxide) (PEO)/poly(acrylic acid) (PAA) multilayers on a single poly(allylamine hydrochloride) (PAH)/PAA priming bilayer, deposited on the S8 cathodes, effectively protected from the polysulfide leakage, while providing a Li+ ion diffusion channel. As a result, PAH/PAA/(PEO/PAA)3 multilayer-coated cathodes exhibited the highest capacity retention (806 mAh g-1) after 100 cycles at 0.5 C, as well as the high C-rate capability up to 2.0 C. Furthermore, the multilayer coating effectively mitigated the polysulfide shuttle effect in the absent of LiNO3 additives in the electrolyte.

4.
ACS Macro Lett ; 4(1): 111-114, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35596381

RESUMO

The synthesis of polymeric materials using elemental sulfur (S8) as the chemical feedstock has recently been developed using a process termed inverse vulcanization. The preparation of chemically stable sulfur copolymers was previously prepared by the inverse vulcanization of S8 and 1,3-diisopropenylbenzene (DIB); however, the development of synthetic methods to introduce new chemical functionality into this novel class of polymers remains an important challenge. In this report the introduction of polythiophene segments into poly(sulfur-random-1,3-diisopropenylbenzene) is achieved by the inverse vulcanization of S8 with a styrenic functional 3,4-propylenedioxythiophene (ProDOT-Sty) and DIB, followed by electropolymerization of ProDOT side chains. This methodology demonstrates for the first time a facile approach to introduce new functionality into sulfur and high sulfur content polymers, while specifically enhancing the charge conductivity of these intrinsically highly resistive materials.

5.
Adv Mater ; 26(19): 3014-8, 2014 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-24659231

RESUMO

Polymers for IR imaging: The preparation of high refractive index polymers (n = 1.75 to 1.86) via the inverse vulcanization of elemental sulfur is reported. High quality imaging in the near (1.5 µm) and mid-IR (3-5 µm) regions using high refractive index polymeric lenses from these sulfur materials was demonstrated.


Assuntos
Polímeros/química , Enxofre/química , Humanos , Raios Infravermelhos , Refratometria
6.
ACS Macro Lett ; 3(3): 229-232, 2014 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35590512

RESUMO

Sulfur-rich copolymers based on poly(sulfur-random-1,3-diisopropenylbenzene) (poly(S-r-DIB)) were synthesized via inverse vulcanization to create cathode materials for lithium-sulfur battery applications. These materials exhibit enhanced capacity retention (1005 mAh/g at 100 cycles) and battery lifetimes over 500 cycles at a C/10 rate. These poly(S-r-DIB) copolymers represent a new class of polymeric electrode materials that exhibit one of the highest charge capacities reported, particularly after extended charge-discharge cycling in Li-S batteries.

7.
Nat Chem ; 5(6): 518-24, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23695634

RESUMO

An excess of elemental sulfur is generated annually from hydrodesulfurization in petroleum refining processes; however, it has a limited number of uses, of which one example is the production of sulfuric acid. Despite this excess, the development of synthetic and processing methods to convert elemental sulfur into useful chemical substances has not been investigated widely. Here we report a facile method (termed 'inverse vulcanization') to prepare chemically stable and processable polymeric materials through the direct copolymerization of elemental sulfur with vinylic monomers. This methodology enabled the modification of sulfur into processable copolymer forms with tunable thermomechanical properties, which leads to well-defined sulfur-rich micropatterned films created by imprint lithography. We also demonstrate that these copolymers exhibit comparable electrochemical properties to elemental sulfur and could serve as the active material in Li-S batteries, exhibiting high specific capacity (823 mA h g(-1) at 100 cycles) and enhanced capacity retention.


Assuntos
Polímeros/química , Enxofre/química , Alcenos/química , Fontes de Energia Elétrica , Eletroquímica , Eletrodos , Cinética , Lítio/química , Polimerização , Polímeros/síntese química , Reologia , Solubilidade , Temperatura de Transição
8.
ACS Nano ; 6(10): 8632-45, 2012 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-22900605

RESUMO

A methodology providing access to dumbbell-tipped, metal-semiconductor and metal oxide-semiconductor heterostructured nanorods has been developed. The synthesis and characterization of CdSe@CdS nanorods incorporating ferromagnetic cobalt nanoinclusions at both nanorod termini (i.e., dumbbell morphology) are presented. The key step in the synthesis of these heterostructured nanorods was the decoration of CdSe@CdS nanorods with platinum nanoparticle tips, which promoted the deposition of metallic CoNPs onto Pt-tipped CdSe@CdS nanorods. Cobalt nanoparticle tips were then selectively oxidized to afford CdSe@CdS nanorods with cobalt oxide domains at both termini. In the case of longer cobalt-tipped nanorods, heterostructured nanorods were observed to self-organize into complex dipolar assemblies, which formed as a consequence of magnetic associations of terminal CoNP tips. Colloidal polymerization of these cobalt-tipped nanorods afforded fused nanorod assemblies from the oxidation of cobalt nanoparticle tips at the ends of nanorods via the nanoscale Kirkendall effect. Wurtzite CdS nanorods survived both the deposition of metallic CoNP tips and conversion into cobalt oxide phases, as confirmed by both XRD and HRTEM analysis. A series of CdSe@CdS nanorods of four different lengths ranging from 40 to 174 nm and comparable diameters (6-7 nm) were prepared and modified with both cobalt and cobalt oxide tips. The total synthesis of these heterostructured nanorods required five steps from commercially available reagents. Key synthetic considerations are discussed, with particular emphasis on reporting isolated yields of all intermediates and products from scale up of intermediate precursors.


Assuntos
Compostos de Cádmio/química , Cobalto/química , Nanotubos/química , Nanotubos/ultraestrutura , Platina/química , Compostos de Selênio/química , Sulfetos/química , Cristalização/métodos , Substâncias Macromoleculares/química , Campos Magnéticos , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície
10.
Appl Spectrosc ; 59(10): 1248-56, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18028621

RESUMO

Surface-relative orientational parameters were determined for monolayer films of N, N'-ditridecylperylenetetracarboxylic dianhydridediimide (C13-PTCDI) in terms of the relative electronic transition dipole strengths, providing a three-dimensional view of the absorption dipole distribution. In order to obtain a macroscopically ordered film, C13-PTCDI was deposited by (1) horizontal Lang-muir-Blodgett (LB) transfer onto methyl- and phenyl-silanized glass, and (2) vapor deposition onto oriented films of poly(tetrafluoroethylene) (PTFE) on glass. Films of LB-deposited C13-PTCDI were found to be completely isotropic prior to annealing. After annealing, these films remained isotropic in the plane of the substrate while the out-of-plane anisotropy was significantly enhanced. In contrast, films of C13-PTCDI vapor deposited onto oriented poly(tetrafluoroethylene) (PTFE)-modified substrates yielded films with a high degree of both in- and out-of-plane anisotropy. Atomic force microscopy (AFM) images of both the LB- and vapor-deposited films show substantial differences in film morphology and long-range order. These results demonstrate that molecular orientation in C13-PTCDI films can be controlled by varying substrate surface chemistry and post-deposition processing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...